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A second X chromosome contributes to resilience 
in a mouse model of Alzheimer’s disease
Emily J. Davis1,2*, Lauren Broestl1*†, Samira Abdulai-Saiku1, Kurtresha Worden1‡, 
Luke W. Bonham1,3, Elena Miñones-Moyano1§, Arturo J. Moreno1, Dan Wang1, Kevin Chang1, 
Gina Williams1,4, Bayardo I. Garay1||, Iryna Lobach5, Nino Devidze6¶, Daniel Kim6, 
Cliff Anderson-Bergman7#, Gui-Qiu Yu6, Charles C. White8,9, Julie A. Harris10, Bruce L. Miller1,3, 
David A. Bennett11, Arthur P. Arnold12, Phil L. De Jager9, Jorge J. Palop1,2,4,6, Barbara Panning13, 
Jennifer S. Yokoyama1,3,14, Lennart Mucke1,2,4,6, Dena B. Dubal1,2,4**

A major sex difference in Alzheimer’s disease (AD) is that men with the disease die earlier than do women. In aging 
and preclinical AD, men also show more cognitive deficits. Here, we show that the X chromosome affects AD-related 
vulnerability in mice expressing the human amyloid precursor protein (hAPP), a model of AD. XY-hAPP mice geneti-
cally modified to develop testicles or ovaries showed worse mortality and deficits than did XX-hAPP mice with either 
gonad, indicating a sex chromosome effect. To dissect whether the absence of a second X chromosome or the pres-
ence of a Y chromosome conferred a disadvantage on male mice, we varied sex chromosome dosage. With or 
without a Y chromosome, hAPP mice with one X chromosome showed worse mortality and deficits than did those 
with two X chromosomes. Thus, adding a second X chromosome conferred resilience to XY males and XO females. In 
addition, the Y chromosome, its sex-determining region Y gene (Sry), or testicular development modified mortality in 
hAPP mice with one X chromosome such that XY males with testicles survived longer than did XY or XO females with 
ovaries. Furthermore, a second X chromosome conferred resilience potentially through the candidate gene Kdm6a, 
which does not undergo X-linked inactivation. In humans, genetic variation in KDM6A was linked to higher brain ex-
pression and associated with less cognitive decline in aging and preclinical AD, suggesting its relevance to human brain 
health. Our study suggests a potential role for sex chromosomes in modulating disease vulnerability related to AD.

INTRODUCTION
The expansion of translational neuroscience to investigate sex dif-
ferences and their mechanistic underpinnings is of major conse-
quence to human health (1). Understanding what makes one sex more 
vulnerable (or resilient) to aging and disease unravels new pathways 
to target with treatments that could benefit both sexes.

Alzheimer’s disease (AD) is the most common neurodegenera-
tive condition and a global health threat. In the absence of effective 

medical treatments, more than 50 million men and women world-
wide will suffer from this devastating condition by 2050 (2). The 
burdens of the disease combined with failed clinical trials (3) warrant 
a deeper understanding of the heterogeneous nature of AD, with 
the goal of developing better therapies.

Being male or female, defined here as harboring a different sex 
chromosome complement (XY versus XX), is an understudied bio-
logic variable that contributes heterogeneity to AD. Sex differences 
in AD reveal differing vulnerabilities in men and women (4, 5). Many 
more women have AD, largely due to their longevity (6) as they live 
to advanced ages, when AD risk and incidence is highest. In contrast, 
men with the disease die earlier in populations worldwide, indicat-
ing a male disadvantage with early-onset (7–9) and late-onset (10, 11) 
subtypes of AD. Furthermore, in aging and preclinical AD before the 
age of 85 years, men show worse cognition (12), more cognitive de-
cline (13–15), and increased measures of neurodegeneration (16), 
despite similar deposition of amyloid and tau (15, 17), the patho-
logical hallmarks of AD. This could underlie higher prevalence (18) 
and earlier onset of mild cognitive impairment (MCI) in men com-
pared to women in some populations (19, 20). Here, we assess sex-
biased mortality in AD by meta-analysis, investigate whether sex 
chromosomes affect vulnerability in a mouse model of AD, and test 
whether an X chromosome gene influences cognition in this mouse 
model.

RESULTS
Male sex and increased mortality in AD and the hAPP  
mouse model
We conducted a meta-analysis of data collected on mortality in human 
populations worldwide. Only longitudinal studies that defined the 
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time variable as age of disease onset or duration of disease after onset 
were included; cross-sectional studies were excluded. Our meta-
analysis showed that male sex increased risk for death in AD by 62% 
compared to female sex [male hazard ratio (HR) 1.63, CI 1.45 to 1.84, 
P < 0.0001; Fig. 1]. We then examined mortality in transgenic mice 
that expressed mutated forms of the human amyloid precursor protein 
(hAPP) (line J20) (21) and exhibited premature death, cognitive im-
pairments, and pathological markers of the disease. Male hAPP mice 
died significantly earlier than did female hAPP mice on two genetic 
backgrounds, C57BL6/J (P < 0.001; Fig. 2A) and a mixed F1 generation 
of C57BL6/J crossed with FVB/N (P < 0.05; fig. S1).

Men and women undergo depletion of circulating gonadal hor-
mones with aging (22–24), but mice do not (fig. S2) (25, 26). Because 
AD is a disease of aging, we simulated human reproductive aging in 
male and female nontransgenic and hAPP mice by gonadectomy 
to deplete circulating hormones (Fig. 2B) and assessed survival in 
gonadectomized male and female hAPP mice. Male hAPP mice still 
died significantly faster than did female mice (P < 0.05; Fig. 2C). We 
explored whether hAPP mice showed a sex difference in cognitive 
functions independent of gonadal hormones. To reduce confounders, 
equalize hormones between sexes, and model reproductive aging of 
humans, we gonadectomized all nontransgenic and hAPP mice.

Male sex increases cognitive and molecular deficits 
in hAPP mice
We tested spatial learning and memory of gonadectomized mice in 
the Morris water maze and found that hAPP mice were impaired 
(P < 0.05; Fig. 2D). However, male hAPP mice traveled significantly 

longer distances to find the hidden platform than did females, indi-
cating poorer learning capacity (P < 0.05; Fig. 2D). In a probe trial, 
male hAPP mice lacked memory retention, in contrast to all other 
groups (Fig. 2E). All mice located the target platform equally well 
when visible (Fig. 2D), and male and female mice within each group 
swam at equal speeds, although hAPP mice overall swam marginally 
slower (P < 0.001; fig. S3A).

In passive avoidance testing, which measures hippocampus- and 
amygdala-dependent fear memory, male hAPP mice, but not females, 
quickly reentered the dark chamber where they received a shock 
during training (P < 0.05; Fig. 2F). Male hAPP mice, but not females, 
lost the fear memory (P < 0.05; Fig. 2, G and H). Male vulnerability 
to deficits was significant with gonadectomy at young, middle, or old 
life stage (P < 0.05 to P < 0.001; fig. S4), across a range of cognitive 
and behavioral tasks (P < 0.05 to P < 0.001; fig. S4), and in an inde-
pendent transgenic line of hAPP mice, hAPP-J9, which showed milder 
deficits (P < 0.05; fig. S5) (21, 27, 28).

Male hAPP mice showed significantly decreased expression of the 
neuronal activity–related protein calbindin (P < 0.05; Fig. 2I) in the 
hippocampus. Male and female hAPP mice did not differ in soluble 
-amyloid (A) (Fig. 2J) or protein expression of hAPP, total tau, and 
phospho-tau in the hippocampus (figs. S6, A to D, and S7) when 
cognitive and behavioral deficits had emerged (3 to 4 months). They 
also did not differ in amyloid plaque deposition (Fig. 2, K and L, and 
fig. S8) during middle age (14.5 to 15 months); however, females 
tended to show more plaques at a very old age (24 to 27 months) 
(fig. S9) as previously observed (29), despite decreased behavioral 
deficits compared to males.
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Fig. 1. A meta-analysis of hazard ratios for male and female mortality in AD populations worldwide. Hazard ratios (HRs) and 95% CIs are shown in a forest plot for 
studies (8, 11, 95–107) reporting male risk, compared to female risk, for death in longitudinal (and not cross-sectional) analysis of individuals with AD. Overall HR with 95% CI shown 
in bold indicates increased risk of male mortality (male, HR 1.63, CI 1.45 to 1.84; P < 0.0001). WHICAP, Washington Heights-Inwood Columbia Aging Project; CSHA, Canadian 
Study of Health and Aging; EDAC, Evolution of Dementia of the Alzheimer-type and Caregiver burden; AgeCoDe, Aging, Cognition, and Dementia in Primary Care Patients.
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Fig. 2. Male sex increases mortality, cognitive deficits, and synaptic protein abnormalities in hAPP mice. (A) Shown are Kaplan-Meier survival curves of male hAPP 
mice (n = 1572, blue) compared with female hAPP mice (n = 1589, red); all mice had intact gonads (log-rank test, P < 0.001). (B) All mice except those in (A) underwent 
gonadectomy (Gnx) at about 2.5 months of age; this was followed by behavioral testing conducted from 4 to 7 months of age and survival analysis conducted until 3 years 
of age. (C) Shown are Kaplan-Meier survival curves of male (n = 116) compared to female (n = 123) hAPP mice after gonadectomy (log-rank test, P < 0.05). (D) Shown are 
spatial learning curves of mice (age 4 to 7 months; n = 10 to 15 per group) tested in the Morris water maze during hidden platform training and when the platform was 
visible. Data points are daily average of total distance traveled to reach the platform over four trials. Mixed-model ANOVA for hidden training: female hAPP versus male 
hAPP mice, P < 0.05. (E) A probe trial was conducted after hidden platform learning and removal of the escape platform. Percentage of time mice spent in the target 
quadrant of the maze, indicating memory for platform location, versus the average time spent in the other three quadrants is shown; *P < 0.05; ***P < 0.001. The dashed 
line represents chance performance (25%). (F) Shown is passive avoidance, fear memory of mice (age 3 to 3.5 months; n = 7 to 10 per group) reflected by latency to enter 
the dark chamber during training and testing 1 day after an electric shock to the foot. Two-way ANOVA: hAPP effect, P < 0.01; hAPP by sex interaction, P < 0.05. (G) Forgetting 
of passive avoidance memory in a separate cohort of mice (age 5 to 6 months; n = 10 to 12 per group), reflected by latency to enter a dark chamber 1, 5, and 8 days after 
a foot shock, was measured. The dashed line represents latency to enter the dark chamber during training, which did not differ among groups. (H) Percentage loss of fear 
memory from days 1 to 5 is shown. The dashed line represents the average for nontransgenic (NTG) animals. (I) Shown is quantitation of calbindin immunoreactivity in 
mouse dentate gyrus (age 5 to 7 months; n = 11 to 14 mice per group). Two-way ANOVA: hAPP effect, P < 0.05; hAPP by sex interaction, P < 0.05. Means are relative to NTG 
male control mice, arbitrarily defined as 1. (J) Soluble A1-42 amounts in the mouse hippocampus determined by enzyme-linked immunosorbent assay (ELISA) are shown 
(age 3 months; n = 8 to 11 mice per group). (K) Representative immunostaining of hippocampal A deposits in coronal brain sections from a male (top, M) and female 
(bottom, F) hAPP mouse (age 14.5 to 15 months). Scale bar, 200 m; magnification, ×4. (L) Quantitation of percentage area covered by A deposits in hAPP mice (age 14.5 
to 15 months; n = 11 per group). Behavioral studies in male and female NTG and hAPP mice were performed across seven independent cohorts including in fig. S4. 
#P = 0.06; *P < 0.05; **P < 0.01; ***P < 0.001 [Bonferroni-Holm for (F), (G), and (I)]. Data are presented as means ± SEM.
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We examined hAPP mRNA expression in the presence and 
absence of gonads and found that hAPP mRNA expression was 
equivalent across the experimental groups (fig. S10). Therefore, any 
unintentional gonadal hormone influences at the promoter of 
hAPP-J20 mice were not observed, a critical measure when directly 
comparing sexes in transgenic disease models.

Sex chromosomes mediate increased male vulnerability 
in hAPP mice
To dissect the etiology of male disadvantage related to AD after 
gonadectomy, we examined Four Core Genotype (FCG) (30, 31) 
mice. In normal mice and humans, the Sry gene on the Y chromo-
some encodes a protein that initiates development of testes followed 
by perinatal masculinization of the body and brain (32). In the FCG 
mouse model, Sry is transposed onto an autosome from the Y chro-
mosome. This genetic manipulation enables generation of XX and 
XY mice, each with either female ovarian (F, −Sry) or male testicular 
(M, +Sry) development: XX(F) ovaries, XX(M) testes, XY(F) ova-
ries, and XY(M) testes. A sex difference that varies by gonads is 
gonadal sex–mediated; one that varies by chromosome complement 
is sex chromosome–mediated (Fig. 3A).

We crossed FCG mice with hAPP mice to produce eight geno-
types that included the four sex genotypes with or without hAPP 
(Fig. 3B). After sexual differentiation and reproductive maturity, we 
gonadectomized mice and assessed survival, cognition, and bio-
chemical markers (Fig. 3C). XY-hAPP mice sexually differentiated 
as either male (M, testicular phenotype, +Sry) or female (F, ovarian 
phenotype, −Sry) died faster than did XX-hAPP mice of either 
gonadal phenotype (Fig. 3, D to F). In addition to the main effect of 
sex chromosomes, sex chromosomes interacted with gonadal phe-
notype in XY-hAPP mice. That is, XY-hAPP males (+Sry) survived 
longer than XY-hAPP females (−Sry) (P < 0.05; Fig. 3G), an effect 
not observed in XX-hAPP mice.

To determine whether sex chromosomes mediate male vulnera-
bility to A-related cognitive deficits, we tested mice in the Morris 
water maze. In finding the hidden platform, male or female XY-hAPP 
mice showed significantly worse learning than did male or female 
XX-hAPP mice (P < 0.01; Fig. 3, H and I, and fig. S11A). In contrast, 
all nontransgenic mice without hAPP learned similarly (Fig. 3, H and I, 
and fig. S11A). In a probe trial, XY-hAPP mice lacked memory re-
tention (Fig. 3, J and K, and fig. S11B), whereas all XX (nontransgenic 
and hAPP) mice remembered, regardless of being male or female 
(P < 0.05; Fig. 3J and fig. S11B). All mice swam at equal speeds and 
located a visible target platform equally (fig. S3, B and C). In passive 
avoidance testing, male or female XY-hAPP mice showed signifi-
cantly worse fear memory than did male or female XX-hAPP and 
nontransgenic mice (P < 0.001 and P < 0.01, respectively; fig. S12). 
As in non-FCG hAPP mice, male or female XX and XY mice did not 
differ in the amount of soluble A in the hippocampus (fig. S6E) at 
the age of cognitive and behavioral testing.

A second X chromosome confers resilience to AD-related 
vulnerability in XY (male) and XO (female) hAPP mice
To further dissect causes of the sex chromosomal effects, we deter-
mined whether the presence of a Y or the lack of a second X chro-
mosome conferred male disadvantage in hAPP mice. We investigated 
the XY* model (33, 34) of sex chromosomal biology in mice with 
and without hAPP. The Y* chromosome in XY* males contains an 
altered pseudoautosomal region that recombines abnormally with 

the X chromosome during meiosis. Progeny of XY* males crossed 
with XX females include four sex genotypes roughly equivalent to the 
following: XX and XO mice with ovaries and XY and XXY mice with 
testes. A sexual dimorphism that varies by the presence or absence 
of a Y is Y chromosome–mediated; one that varies by the presence 
of one versus two X’s is X chromosome–mediated (Fig. 4A).

We crossed XY* males with hAPP females to produce eight geno-
types of mice exhibiting varying dosages of X and Y chromosomes, 
with or without hAPP (Fig. 4B). We gonadectomized mice and then 
assessed survival, cognition, and biochemistry (Fig. 4C). Mice with 
one X chromosome (XY-hAPP and XO-hAPP) died significantly faster 
than did those with two X chromosomes (XX-hAPP and XXY-hAPP) 
(P < 0.01; Fig. 4, D to F). Therefore, the addition of an X chromosome 
to XY-hAPP mice prevented male vulnerability, extending survival 
to that observed in XX-hAPP females. In addition to the main effect of 
X dose (P < 0.01; Fig. 4E), but not of Y (Fig. 4F), the Y interacted 
with the X; that is, XY-hAPP mice survived longer than XO-hAPP 
mice (P < 0.01; Fig. 4G).

We then tested whether the addition of an X to XY-hAPP mice 
reduced male vulnerability to cognitive deficits in the passive avoid-
ance task (Fig. 4, H to J). Both male and female hAPP mice with one 
X chromosome (XY-hAPP and XO-hAPP) showed significant for-
getting of fear memory (P < 0.05; Fig. 4, H to J), whereas those with 
two X chromosomes (XX-hAPP and XXY-hAPP) did not forget 
(Fig. 4, H to J). In contrast, all mice without hAPP had comparable 
and robust fear memory. As in FCG-hAPP mice, XY*-hAPP mice 
with 1X or 2X chromosomes did not differ in the amount of soluble 
A in the hippocampus (fig. S6F). Thus, although hAPP mice with 
1X or 2X chromosomes had comparable amounts of A, hAPP mice 
with 2X chromosomes were less impaired.

A second X chromosome elevates Kdm6a expression 
independent of gonadal phenotype or the Y chromosome
We sought to understand how a second X chromosome could confer 
resilience, because XY and XX mice express only one active X due 
to X-chromosome inactivation in females. Whereas X-chromosome 
inactivation silences one X chromosome in mammalian XX cells, a 
small subset of X-linked genes escape X-chromosome inactivation 
and show transcription from both alleles, leading to higher expression 
in females (35–38). Of those, we focused on the gene lysine-specific 
demethylase 6a (Kdm6a; also known as Utx) encoding an H3K27 
demethylase that consistently escapes X-chromosome inactivation 
in both mice and humans (39, 40). Loss-of-function mutations in KDM6A 
cause cognitive deficits in humans (41–46), and Kdm6a plays a post-
developmental role in mouse synaptic plasticity and cognition (47).

We therefore examined Kdm6a expression in mouse brains. We 
first confirmed that Kdm6a escaped X-chromosome inactivation in 
the XX mouse brain through RNA fluorescence in situ hybridization 
(RNA FISH) (48) in mouse primary cortical neurons. Isolated XX 
neuronal nuclei with Xist RNA coating the inactive X chromosome, 
indicating X-chromosome inactivation, showed Kdm6a labeling at 
two sites, marking its transcription from both the active and inactive 
X chromosomes (Fig. 5A). In contrast, XY neurons showed only one 
site for transcription (Fig. 5A). Immunolabeling of Kdm6a protein 
in the adult hippocampus of XX and XY mice with a well-characterized 
antibody (49) showed a largely neuronal cytoplasmic staining pattern 
that was diffuse in both XX and XY mouse brains (Fig. 5B).

We assessed whether two X chromosomes increased expression of 
Kdm6a protein and mRNA in mouse hippocampus. Kdm6a protein 
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Fig. 3. Sex chromosomes mediate increased male vulnerability to mortality and cognitive impairments in hAPP mice. (A) Strategy to identify the cause of sexual 
dimorphism using the FCG mouse model. (B) Diagram of the cross between hAPP and FCG transgenic mice is presented. FCG mice harbor a transposition of the Sry gene 
from the Y chromosome onto an autosome (A, autosome). Progeny include XX and XY mice, each with either ovarian (F) or testicular (M) development and with or without 
hAPP expression (hAPP, +). (C) Experimental strategy: All mice underwent gonadectomy at about 2.5 months of age, followed by behavioral testing and survival studies 
at 3 to 6 months of age. (D to G) In the Kaplan-Meier survival curves, (D) all groups of hAPP mice showed (E) a main effect of sex chromosomes on mortality (XY, HR 2.49, 
CI 1.21 to 5.14, P < 0.01) and (F) no main effect of gonadal sex on mortality (P = 0.45). (G) An interaction between sex chromosomes and gonadal sex indicated lower mor-
tality in XY (male, M) compared to XY (female, F) mice (XY-M, HR 0.18, CI 0.03 to 0.92, P < 0.05). Analyses were by Cox proportional hazards for all groups: (XY-M: n = 101; 
XX-F: n = 122; XY-F: n = 18; XX-M: n = 31). (H and I) Spatial learning curves from the eight genotypes of mice tested altogether in the Morris water maze (age 3 to 5 months; 
n = 5 to 6 per group) show that (H) XY-hAPP mice (M or F) traveled longer distances to find the target platform, enabling escape from the water maze, than did XX-hAPP mice 
(M or F). This is highlighted in (I), where all XY-hAPP (M + F) mice were compared with all XX-hAPP (M + F) mice. XX or XY mice without hAPP (M or F) learned similarly well. 
Data points are daily averages of total distance traveled to reach the platform over four trials. Mixed-model ANOVA: XX-hAPP versus XY-hAPP, P < 0.01. (J and K) A probe trial, 
during which the escape platform in the target quadrant was removed, tested for memory of the platform location in the eight genotypes of mice. Percentage of time 
spent in the target quadrant, indicating memory of the platform location, versus the average time spent in the other three quadrants showed that (J) XY-hAPP (M or F) 
mice did not favor the target quadrant, whereas XX-hAPP (M or F) mice did. The greater impairment of learning and memory in XY-hAPP mice is highlighted in (K) where all 
XY-hAPP (M + F) mice are compared with all XX-hAPP (M + F) mice. The dashed line represents chance performance. These findings were replicated in an independent cohort 
(fig. S11). *P < 0.05; **P < 0.01 versus chance performance of 25% (one-sample t tests) or as indicated by bracket (t test). Data are presented as means ± SEM. n.s., not 
significant.
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expression was significantly higher in XX mice than in XY mice as 
measured by two antibodies (P < 0.05; Fig. 5, C and D). To deter-
mine whether the second X chromosome primarily governed high-
er expression, we assessed Kdm6a mRNA in FCG and XY* mice. As 

anticipated (50, 51), hippocampal Kdm6a was significantly elevated 
in XX mice with testes and ovaries (P < 0.001; Fig. 5E). The presence 
of neither hAPP nor the Y chromosome altered this primary X- 
chromosome effect (Fig. 5F).
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Fig. 4. A second X chromosome confers resilience against AD-related cognitive impairments in XY (male) and XO (female) hAPP mice. (A) Strategy to identify whether 
the sex chromosome effect depends on the X or Y chromosome. (B) Diagram of mouse cross used in this experiment. hAPP females (XX, hAPP) were crossed with XY* males that 
harbored an altered pseudoautosomal region on the Y chromosome, allowing abnormal crossover with the X chromosome during meiosis (33, 34). The cross resulted in offspring 
of eight genotypes, each of the sex chromosome genotypes, with or without hAPP. The equivalent number of X and Y chromosomes for each genotype is shown. (C) Experimen-
tal strategy: All mice underwent gonadectomy at 2.5 months of age followed by behavioral testing and survival studies between 3 and 6 months of age. (D to G) In the 
Kaplan-Meier survival curves in (D), all hAPP mice show (E) a main effect of X chromosome dose on mortality (2X, HR 0.2, P < 0.01, CI 0.12 to 0.75) and (F) no main effect of a 
Y chromosome on mortality (P = 0.53). (G) An interaction between X and Y chromosomes showed lower mortality in the presence of Y (or male gonadal type) when X dose = 1 (XY 
versus XO, HR 0.23, P < 0.01, CI 0.08 to 0.64). Analyses were by Cox proportional hazards for all groups (XY: n = 79, XX: n = 88; XO: n = 10; XXY: n = 15 mice). (H to J) Shown is testing 
of mice in the passive avoidance task, measured by latency to enter the dark chamber 1 and 7 days after a foot shock (age 3 to 5 months; n = 4 to 16 per group). (H) Abnormal loss 
of fear memory in hAPP mice of XY and XO genotypes is shown. Two-way repeated measures ANOVA: X dose effect, P < 0.05. The dashed line represents latency to enter the dark 
chamber during training, which did not differ among the groups. (I) Greater loss of fear memory in hAPP mice with 1X compared to 2X chromosomes is presented. (J) Percent 
loss of fear memory in hAPP mice with 1X compared to 2X chromosomes is shown. *P < 0.05 as indicated by bracket (Bonferroni-Holm). Data are presented as means ± SEM.

 at U
niv of S

outhern C
alifornia on M

arch 17, 2021
http://stm

.sciencem
ag.org/

D
ow

nloaded from
 

http://stm.sciencemag.org/


Davis et al., Sci. Transl. Med. 12, eaaz5677 (2020)     26 August 2020

S C I E N C E  T R A N S L A T I O N A L  M E D I C I N E  |  R E S E A R C H  A R T I C L E

7 of 16

KDM6A expression is elevated in the brains of women, 
and KDM6A genetic variation in humans associates 
with cognitive resilience
We explored whether KDM6A mRNA expression was altered by sex 
in the brains of individuals with and without AD. We queried gene 
expression from a public dataset (GSE 15222; tables S1 and S2) 
accounting for age, postmortem interval, and sex. KDM6A expres-
sion was significantly higher in pathologically confirmed AD cases 
relative to controls in the temporal cortex, an area affected in early 
AD (P = 3.64 × 10−4; Fig. 6A). This increase was independently con-
firmed in two other public datasets of human postmortem gene 
expression in the temporal cortex, parahippocampal gyrus, and 
superior temporal gyrus (tables S1 and S3). In contrast, regions typi-
cally affected later or spared in AD such as the cerebellum showed 

no changes (tables S1 to S3). We then assessed KDM6A expression 
in brains of individuals identified as male or female in the GSE 15222 
dataset. KDM6A expression was higher in females with (P = 4.83 × 
10−4; Fig. 6B) and without AD (P = 9.79 × 10−4; Fig. 6B).

We then queried whether KDM6A expression, by proxy of a 
genetic variation, was associated with cognitive change over time. 
Using the Genotype-Tissue Expression project (GTEx) online portal 
of gene expression across tissues of nearly 1000 individuals (52), we 
searched for common variants associated with altered expression of 
KDM6A. The minor allele of one genetic variant, rs12845057, was 
associated with increased expression of KDM6A in the brain 
(P = 7.0 × 10−6). Frequency of the minor allele (A) is about 14% 
globally and 7% in Europeans (53). To test associations between the 
KDM6A variant and cognitive change, we queried the Alzheimer’s 
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Fig. 5. A second X chromosome elevates Kdm6a expression independent of gonads or the Y chromosome in mice. (A) Representative fluorescence in situ hybridiza-
tion images for Kdm6a and Xist (RNA FISH) expression in XX (top) and XY (bottom) primary mouse neuronal nuclei. Kdm6a is shown in red, Xist is shown in green, and 
4′,6-diamidino-2-phenylindole (DAPI) nuclear stain is shown in blue. Nascent Kdm6a transcripts appear as red fluorescent puncta at the site of transcription (indicated by 
white arrows). Xist RNA remains associated with the inactive X chromosome and is detected only in XX cells. Inset numbers indicate the percentage of nuclei with two 
sites of nascent Kdm6a accumulation in XX cells and one site in XY cells (n = 100 cells). Scale bar, 2 m. (B) Representative confocal images of Kdm6a staining (left), Kdm6a 
with DAPI staining (middle), and Kdm6a with Neuronal nuclei (NeuN) staining (right) in the hippocampal dentate gyrus region of a gonadectomized nontransgenic (NTG) 
female XX mouse (top row) and a gonadectomized NTG male XY mouse (bottom row). Kdm6a is shown in red, DAPI nuclear stain is shown in blue, and NeuN is shown in green. 
Scale bar, 50 m; magnification, ×100. (C and D) Western blot representative image (C) and subsequent quantification (D) of Kdm6a protein expression in the hippo-
campus of gonadectomized NTG XX female and XY male mice. Bands represent individual mouse samples. (C) Representative images show samples bound by the GeneTex 
antibody, and (D) quantification is given for both GeneTex and Abcam rabbit anti-Kdm6a antibodies; Kdm6a was normalized using glyceraldehyde phosphate dehydro-
genase (GAPDH) as a loading control. Means are relative to NTG XY male control mice, arbitrarily defined as 1 (age 3.4 to 3.6 months; n = 3 mice per group). Gonadecto-
mized NTG XX female mice show higher Kdm6a protein expression. Two-tailed t test, *P < 0.05. (E and F) Hippocampal Kdm6a mRNA expression in (E) FCG mice (age 3.5 
to 5.5 months; n = 6 to 26 mice per group) and (F) XY* mice (age 5.5 to 7.5 months; n = 4 to 17 mice per group) with and without hAPP, shown relative to XY male mice 
without hAPP. Two-way ANOVA: sex chromosome effect, ***P < 0.001 and X dose effect, ***P < 0.001. Data are presented as means ± SEM in (D) to (F). *P < 0.05; ***P < 0.001 
(Bonferroni-Holm).
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Disease Neuroimaging Initiative (ADNI) dataset derived from a multisite 
study of individuals with both whole-genome sequencing and serial 
neuropsychological examinations (n = 778) that is enriched for in-
dividuals with MCI, a transition phase to AD. The minor allele was 
distributed equally among categories of cognitively normal (n = 268), 
MCI (n = 465), and AD (n = 45) individuals, indicating that it did 
not associate with disease risk (cohort demographics; table S4). Next, 
we used linear mixed-effects regression models to test for an associ-
ation between the minor allele A of the KDM6A variant and cognitive 
change, accounting for baseline age, sex, education, and APOE4 
dose. Increasing dose of the minor allele of the KDM6A variant was 
significantly associated with less cognitive decline over time using 
the Mini-Mental State Examination (MMSE) ( = 0.141, SE 0.035, 
P = 0.00005; Fig. 6C). This finding was consistent in another cognitive 
measure using the Alzheimer’s Disease Assessment Scale (ADAS-cog) 
in overall function using the clinical dementia rating sum of boxes 
score (CDR), when assessing women only in all measures (fig. S13), 
and when assessing cognition in cognitively normal and in MCI in-
dividuals as subgroups (table S5).

Kdm6a knockdown in XX mouse neurons worsens, whereas 
Kdm6a overexpression in XY neurons attenuates A  
toxicity in vitro
We next turned to experiments with primary wild-type mouse neu-
rons exposed to recombinant A1-42. The A preparation was en-
riched for oligomers during the experimental time frame, based on 
our previous characterization (54). XY mouse neurons were more vul-
nerable to A-induced toxicity, in a dose-dependent manner, compared 
to XX neurons, using both the 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay (P < 0.001; Fig. 7A) and 
the lactate dehydrogenase (LDH) assay (P < 0.01; fig. S14). In parallel 
with in vivo findings, neurons derived from XY* mice with one 
X chromosome (XY and XO) were significantly more vulnerable to 
A toxicity than those with two X chromosomes (XX and XXY) 

(P < 0.001; Fig. 7, B and C). The protective effect of two X chromo-
somes was decreased by the Y chromosome (P < 0.05; Fig. 7B), indi-
cating an X:Y interaction.

Given that Kdm6a escapes X-chromosome inactivation in XX mouse 
neurons and is increased in XX compared to XY mouse brains, we 
tested directly whether Kdm6a modulates neuronal susceptibility to 
A toxicity in vitro. In XX mouse neurons, we decreased Kdm6a 
expression (P < 0.01; Fig. 7, D and E) to that found in XY neurons 
via lentivirus-mediated knockdown. Knockdown of Kdm6a in XX 
mouse neurons significantly worsened dose-dependent A toxicity 
(P < 0.01; Fig. 7F) to a range observed in XY neurons. In XY mouse 
neurons, we increased Kdm6a expression to that found in XX neurons 
or higher (P < 0.01; Fig. 7, D and G) via lentivirus-mediated over-
expression. Overexpression of Kdm6a in XY mouse neurons sig-
nificantly attenuated dose-dependent A toxicity (P < 0.001; Fig. 7H) 
to a range observed in XX neurons.

Kdm6a attenuates male vulnerability to cognitive 
impairments in XY-hAPP mice
We next determined whether increasing expression of Kdm6a attenu-
ated male vulnerability to cognitive deficits in XY-hAPP mice. We 
gonadectomized XY nontransgenic and hAPP mice, injected lenti-
virus with (Kdm6A-OE) or without (control) the Kdm6a transgene 
bilaterally into the dentate gyrus, a region that affects spatial learning 
and memory, and analyzed mice behaviorally 1 month later (Fig. 8A). 
Lentiviral-mediated overexpression of Kdm6a in XY males increased 
Kdm6a mRNA expression in the dentate gyrus (P < 0.05; Fig. 8B) to 
that expected in XX females. In finding the hidden platform of the 
Morris water maze, XY-hAPP-Kdm6a-OE mice showed significantly 
better performance than XY-hAPP control mice measured by latency 
(P < 0.001; Fig. 8C) and learning (P < 0.05; Fig. 8D), quantified by 
comparing the last day of training to the first. Similarly, XY-hAPP-
Kdm6a-OE mice showed significantly better learning than did 
XY-hAPP control mice measured by distance (P < 0.001; Fig. 8, E and F), 
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the temporal and parahippocampal cortex of individuals without (control, n = 135) and with AD (n = 86) (***P = 3.64 × 10−4). (B) Shown is human KDM6A RNA expression 
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or no allele (noncarriers, reference, brown, n = 692) for the rs12845057 variant of the KDM6A gene associated with increased KDM6A RNA expression in brain (table S4). 
Cognition was measured by the MMSE score. Increasing dose of the minor allele was associated with slower rates of cognitive decline over time ( = 0.141, SE 0.035, 
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although distance curves did not statistically differ. In a probe trial, 
XY-hAPP-Kdm6A-OE mice showed robust spatial memory retention, 
compared to XY-hAPP control mice (P < 0.01; Fig. 8, G and H) perform-
ing similarly to unimpaired nontransgenic mice. With the visible 
platform, hAPP mice swam marginally faster with longer distance 
than did nontransgenic mice; however, overexpression of Kdm6a did 
not alter either measure in either genotype (fig. S3, D and E). Further, 
increasing Kdm6a expression in XY mice did not alter hAPP-induced 
hyperactivity in the open field task and increased time spent in open 
arms in the elevated plus maze in hAPP mice (fig. S15).

DISCUSSION
Our data suggest a role for sex chromosomes in mice in countering 
deficits and toxicity related to AD in both sexes. A second X chro-
mosome decreased mortality and brain dysfunction in gonadecto-
mized male and female hAPP mice, without altering soluble A or 
co-pathogenic proteins. A second X chromosome conferred resil-
ience, in part, through the candidate gene Kdm6a, a histone demethylase 
gene that escapes X-chromosome inactivation, causing higher ex-
pression in cells with two X’s compared to one X. Genetic variation 
of KDM6A linked to its increased brain expression was associated 

Fig. 7. Kdm6a knockdown in XX mouse neurons 
worsens, whereas Kdm6a overexpression in XY 
neurons attenuates A toxicity in vitro. (A to 
C) Vulnerability of mouse primary neurons was 
tested by the MTT assay. For each genotype, cell 
toxicity was calculated as a percentage of the 
corresponding vehicle-treated group, 24 hours 
after treatment with increasing doses of A. (A) 
Mouse primary cortical XY neurons showed greater 
vulnerability than did XX neurons after exposure 
to vehicle or increasing doses of A (n = 8 to 
40 wells per experimental group from 8 to 10 pups 
per genotype, from four independent litters). 
Two-way ANOVA: sex chromosome effect, P < 0.01; 
A dose effect, P < 0.001; interaction, P < 0.05. 
(B) Toxicity of A in neurons of varying X and Y 
chromosome dosage derived from littermate pups 
of XY* males crossed with nontransgenic (NTG) 
females, with genotypes roughly equivalent to XO, 
XX, XY, and XX, exposed to vehicle or A (2.5 M) 
(n = 15 to 45 wells per experimental group from 
7 to 10 pups per genotype, from four independent 
litters). Two-way ANOVA: X effect, P < 0.0001; Y effect, 
not significant; X by Y interaction, P < 0.05. (C) 
Main effect of X chromosome dose shows increased 
A toxicity in neurons with 1X (XO and XY com-
bined) compared to those with 2X chromosomes 
(XX and XXY combined). (D) Experimental strategy 
of lentivirus-mediated knockdown of Kdm6a in 
XX mouse primary cortical neurons (top) and 
Kdm6a overexpression in XY mouse primary cor-
tical neurons (bottom). (E) Shown is Kdm6a mRNA 
expression in neurons transfected with lentivirus 
expressing scrambled (SCR) or short hairpin (sh) 
Kdm6a for knockdown expressed relative to XX 
SCR (n = 5 to 6 wells per experimental group from 
eight XX pups, from two litters). Two-tailed t test, 
**P < 0.01. (F) Shown is A toxicity in XX neurons 
treated with SCR or shKdm6a and exposed to 
vehicle or A (1 and 3 M); knockdown of Kdm6a 
worsened A toxicity (n = 24 to 25 wells per ex-
perimental group from 14 XX pups, from three 
independent litters). Two-way ANOVA: Kdm6a 
effect, P < 0.001; A effect, P < 0.001; Kdm6a by 
A interaction, P = 0.99. (G) Kdm6a mRNA ex-
pression in neurons transfected with lentivirus 
expressing control (CTL) or overexpressing Kdm6a 
(Kdm6a-OE), shown relative to control XY neurons 
(n = 3 to 8 wells per experimental group from 12 XY pups, from two independent litters). One-way ANOVA, P < 0.001. (H) Shown is A toxicity in XY neurons transfected 
with lentivirus expressing control or overexpressing Kdm6a (Kdm6a OE) and exposed to vehicle or A (1 and 3 M); overexpression of Kdm6a attenuated A toxicity (n = 12 to 
13 wells per experimental group from 26 XY pups, from three independent litters). Two-way ANOVA: Kdm6a effect, P < 0.001; A effect, P = 0.01; Kdm6a by A interaction, 
P = 0.99. *P < 0.05; **P < 0.01; ***P < 0.001 (Bonferroni-Holm). Data are presented as means ± SEM.

D E

0

20

40

60

80

R
el
at
iv
e 
ne
ur
ot
ox
ic
ity
 (%

)

2X
1X

***

0

20

40

60

80

1Y 0Y

F

A

1 2.5 5

XY

B

0

20

40

60

80

1X 2X

C

G H

0 4 10 11
Days

Plate Lentivirus Aβ

0 4 14 15
Days

Plate Lentivirus Aβ

Assay

Assay

XX neurons: shKdm6a

XY Neurons: Kdm6a-OE 

0.0

0.5

1.0

1.5

R
el
at
iv
e 
K
dm
6a
 m
R
N
A 
ex
pr
es
si
on

XX XX

R
el
at
iv
e 
K
dm
6a
 m
R
N
A 
ex
pr
es
si
on

***

**

**

SCR
shKdm6a

0

20

40

60

80

R
el
at
iv
e 
ne
ur
ot
ox
ic
ity
 (%

)

XX XX

1 3

*

**

**

SCR
shKdm6a

XY XY

1 3

*** *** ****

Kdm6a-OE:

Genotype: XX XY XY
_ _ +

**

***
**

0

20

40

60

80

R
el
at
iv
e 
ne
ur
ot
ox
ic
ity
 (%

)

0

1

2

3

4

2X
1X

2X (XX + XXY)
1X (XY + XO)

XY XY XXXX XX XY XXXXY XO

R
el
at
iv
e 
ne
ur
ot
ox
ic
ity
 (%

)

R
el
at
iv
e 
ne
ur
ot
ox
ic
ity
 (%

)

CTL
Kdm6a-OE

CTL
Kdm6a-OE

 at U
niv of S

outhern C
alifornia on M

arch 17, 2021
http://stm

.sciencem
ag.org/

D
ow

nloaded from
 

http://stm.sciencemag.org/


Davis et al., Sci. Transl. Med. 12, eaaz5677 (2020)     26 August 2020

S C I E N C E  T R A N S L A T I O N A L  M E D I C I N E  |  R E S E A R C H  A R T I C L E

10 of 16

with slower cognitive decline in an aging population of individuals, 
including those with MCI.

Dissection of sex differences and their mechanistic underpinnings 
with powerful genetic tools provides opportunities to understand 
disease and unravel new sex-based pathways (55). Male sex is a ma-
jor, underappreciated risk factor for rapid progression to death in 
AD (7–11), as confirmed by our meta-analysis (Fig. 1), and in other 
neurodegenerative conditions (56–59). These findings do not con-
tradict the fact that more women have AD due to their longevity (6) 
and their increased risk or incidence after age 85 (4, 5, 12, 60), which 
together contribute to a higher lifetime risk of AD in women com-
pared to men (61). When men get AD, they die faster (7–11). The 
male brain may be biologically older and more vulnerable, an idea 
supported by epigenetic (62) and metabolic studies (63) of humans.

In aging and preclinical AD, male sex may increase the likeli-
hood of abnormalities favoring transition to clinical dementia. Men 

show worse memory function (12) and cognitive decline than do 
women (13–15), implying less compensation for similar subclinical 
brain pathology measured by positron emission tomography imag-
ing of amyloid (12, 15). In studies of AD biomarkers (64), men 
show increased neurodegeneration (16, 17), a precursor for demen-
tia. These findings could underlie earlier onset and increased inci-
dence or prevalence of MCI observed in men from many (19, 20, 65–67), 
although not all (68–70), populations.

Recent studies of aging and AD [reviewed in (4)] indicate similar 
amyloid amounts in the brain (12, 15, 17, 71, 72) and cerebrospinal 
fluid (CSF) (71) of men and women, similar overall tau burden (73), 
but increased CSF and regional tau in women with high amyloid 
(71, 73). Likewise, AD pathology is similar between the sexes, up 
until older ages (72), when both pathology and risk of AD increases 
in women. Each sex may respond differently to comparable amounts 
of pathogenic proteins, a possibility observed in mice (74), which 
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Fig. 8. Kdm6a overexpression in hippocampus attenuates male vulnerability to cognitive impairments in XY-hAPP mice. (A) Experimental strategy: XY mice were 
gonadectomized and injected with lentivirus expressing control or overexpressing Kdm6a (Kdm6a OE) into the dentate gyrus of the hippocampus; animals were then 
tested on behavioral tasks. (B) Shown is Kdm6a mRNA expression measured in dentate gyrus of mice injected with lentivirus expressing control or overexpressing Kdm6a 
(Kdm6a OE) (n = 3 mice per experimental group), relative to XY control; t test, *P < 0.05. (C to F) Spatial learning task results for the four experimental groups of XY mice 
tested in the Morris water maze (age 5 to 5.5 months; n = 7 to 15 per group). XY-hAPP-Kdm6a-OE mice exhibited (C) decreased latency to find the target escape platform 
(mixed-model ANOVA: XY-hAPP-CTL versus XY-hAPP-Kdm6a-OE, P < 0.001) and (D) a better learning index of latency during hidden platform training, measured by the 
difference in performance of each mouse at day 4 from average group performance on day 1 (D1 to D4). (E) XY-hAPP-Kdm6a-OE mice did not travel a statistically de-
creased distance to find the target platform but (F) showed better learning in the distance traveled during hidden platform training. (G and H) Probe trial results 24 hours 
after completion of hidden platform learning, indicating spatial memory of the escape platform location, showed that XY-hAPP-Kdm6a-OE mice had attenuated spatial 
deficits including decreased (G) latency to target platform and (H) increased number of entries into the target zone, compared to XY-hAPP-CTL mice. *P < 0.05; **P < 0.01; 
***P < 0.001 [Bonferroni-Holm for (G) and (H)]. Data are presented as means ± SEM.
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may explain why with similar tau loads, men show less neuro-structural 
preservation (75) and more cognitive impairment (76).

Congruent with human observations, soluble A and amyloid 
deposition were similar between the sexes in our mice until very old 
age and did not explain male vulnerability at the neuronal or cogni-
tive level. Other AD mouse models show very high amounts of A 
with increased mortality in female mice (77–80) and are thus incon-
gruent with our mouse findings. Given that no single model of AD fully 
recapitulates human AD, a disease with a wide clinical spectrum, we 
conducted cellular viability, cognitive, behavioral, synaptic, and mortal-
ity studies that collectively showed worse outcomes in primary neurons 
and gonadectomized male mice, a sex bias that persisted in our hAPP 
mice regardless of age at hormone depletion, mouse strain, or genetic 
background. Our mouse studies focused on hAPP/A-dependent 
abnormalities, representing a specific component of AD, a complex 
disease comprising multiple pathogenic proteins and risk factors.

We used gonadectomy to equate gonadal hormones between the 
sexes and simulate human reproductive aging, an approach distinctly 
different from previous studies of sex in AD-related models [re-
viewed in (81)]. Gonadectomy enables direct comparison of the sexes 
without confounding due to activational (short-acting) effects of 
ovarian and testicular hormones. This is of value, because ovarian 
hormones modulate A, network dysfunction, and cognitive defi-
cits in female hAPP mice (82, 83). Our experiments did not test the 
activational effects of hormonal treatments [reviewed in (82, 83)].

Sex chromosomes largely governed sex differences in vulnerability 
to mortality, cognitive dysfunction, molecular impairments, and cel-
lular dysfunction in the FCG-hAPP mouse model. The XY genotype in 
hAPP mice that developed with ovaries or testes worsened measures, 
compared to the XX genotype that developed with ovaries or testes. 
Similarly, we recently found that sex chromosomes influenced mor-
tality in mice during normal aging (84), suggesting action on funda-
mental pathways converging in aging and disease. The lack of a 
second X chromosome, rather than the presence of a Y chromosome, 
caused male disadvantage in animal and cellular models of AD in the 
XY* model. The presence of only one X chromosome (in XO females 
and XY males) consistently worsened hAPP/A-related mortality, cog-
nitive deficits, and cellular viability in both males and females, com-
pared to two X chromosomes (in XX females and XXY males). The 
Y chromosome, the Y chromosome gene Sry, testes, or some combina-
tion of these decreased mortality in hAPP mice with one but not two 
X chromosomes. XY-hAPP males (+Sry) survived longer than did XY-
hAPP females (−Sry) or XO-hAPP females (−Sry), indicating a poten-
tial protective role of the Sry protein or of testicular development itself 
in the XY, but not XX, genotype. Given that the X and Y chromosomes 
share homologous genes in pseudoautosomal regions, select Y genes 
may partially compensate for the lack of a second X chromosome.

Many factors influencing neural function reside on the X chro-
mosome (85). Two X chromosomes could confer neural advantage 
through increased X dose arising from baseline escape of the inac-
tive X chromosome. Whereas XY and XX organisms express one 
active X due to X-chromosome inactivation in females, select fac-
tors like the Kdm6a gene escape inactivation. Kdm6a is a histone 
demethylase that robustly and consistently escapes X-chromosome 
inactivation in female mice and humans (39, 40) and is enriched in the brain 
(51, 86, 87). The second X chromosome increased Kdm6a expression, in-
dependent of gonads or the Y chromosome, in our mice. This is important, 
because the Y paralog of Kdm6a, UTY (88), has high homology to Kdm6a 
(89) but a nearly inactive histone demethylation domain (90, 91). 

The presence of UTY in XY neurons and mice did not modify Kdm6a-
mediated attenuation of AD-related toxicity in vitro or in vivo.

KDM6A expression in human brain was higher in females com-
pared to males and in those with AD compared to controls. Because 
KDM6A loss-of-function mutations cause intellectual disability in hu-
mans (42–46) and Kdm6a elevation caused neural and cognitive 
resilience in our mouse studies, it is interesting to speculate that in-
creased KDM6A in AD could be a protective, compensatory response.

A common genetic variant in an intergenic region near KDM6A, 
rs12845057, was associated with greater expression in human brain. 
The minor allele frequency varies across populations, and about 13% 
of females and 6.5% of males carry it globally (53). In the current 
study of the ADNI cohort, increasing the minor allele dose was asso-
ciated with cognitive resilience in individuals undergoing longitudi-
nal testing over a decade, a finding consistent across clinical measures 
and when we assessed females only. Our analysis in males, who carry 
half the frequency, was likely limited by statistical power. In our sub-
group analyses by clinical diagnosis, individuals with MCI showed the 
most resilience associated with the KDM6A minor allele, suggesting 
that increased KDM6A could modify clinical trajectory during the 
transitional period from MCI to AD. Whereas the ADNI cohort in-
cludes longitudinal data and multisite investigations, its limitations 
include a study of predominantly non-Hispanic, Caucasian popula-
tions within the United States. How broadly our findings extend to 
other populations remains to be determined.

In the current study, modestly increasing Kdm6a expression in 
XY mouse primary neurons and hippocampus of XY-hAPP mice 
attenuated hAPP/A neurotoxicity and cognitive impairment. These 
findings suggest that minor elevation in Kdm6a transcription was 
sufficient to functionally increase neural resilience and partially re-
verse deficits in the XY-hAPP mice. Whether this requires histone 
demethylase activity is currently unknown. Kdm6a may act differently 
across cell types and biological systems. Whereas Kdm6a deletion in 
hippocampus impairs synaptic plasticity and cognition in mice (47), 
its deletion in immune CD4+ T cells ameliorates the neuroimmune 
response in a mouse model of autoimmune encephalomyelitis (92). 
Thus, downstream actions of Kdm6a may be cell type specific.

Our study has several caveats and limitations. Our experiments 
do not exclude other potential contributions of X- or Y-based bio-
logical functions. A second X chromosome could contribute resilience 
through other baseline X escapee genes, epigenetic diversity derived 
from parent-of-X origin, or reactivation of the silent X chromo-
some. Furthermore, we did not study how the Y chromosome, its 
Sry gene, or testicular development contributed to a decreased mortality 
in hAPP mice with one X chromosome. Last, there are limitations 
to modeling AD in mice, including in each mouse model we used. 
Thus, we investigated several models and approaches, including 
mouse primary neurons, hAPP mice, human brain tissue expression 
data, and human cognitive data, and included several AD-related 
measures to increase the potential relevance of our findings. Collec-
tively, these results imply that a second X chromosome, or genes that 
an X chromosome harbors, could contribute to counteracting AD 
vulnerability in both sexes.

MATERIALS AND METHODS
Study design
The objectives of our study were to probe the association of sex-
based mortality risk in AD using meta-analysis; investigate whether 
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sex chromosomes modify vulnerability related to AD in mice using 
molecular, cellular, neurogenetic, and behavioral approaches; and 
test in mice whether an X chromosome factor decreased male vulner-
ability related to AD. We used experimental models of AD (mice 
and their primary neurons) and human databases of both brain tis-
sue expression and of clinical cognitive performance. All animal studies 
were approved by the Institutional Animal Care and Use Commit-
tee of the University of California, San Francisco and conducted 
in compliance with the National Institutes of Health guidelines. 
For animal experiments, all studies were conducted in a blinded 
manner and included male and female mice across the lifespan in 
multiple cohorts at the ages and background strains indicated. Mouse 
studies used littermate controls along with randomization of mice, 
and experimentalists were blinded to the genotypes of the mice. 
In mouse studies, exclusion criteria (greater than 2 SDs above or 
below the mean) were defined a priori to ensure unbiased exclusion 
of outliers. We used transgenic mouse models of sex biology crossed 
with hAPP mice and also used mouse primary neurons exposed to 
varying doses of A. We assessed several outcome measures includ-
ing mortality, cognition, cell death, pathology, RNA and protein 
measures, and biochemistry. Cell culture treatments were carried 
out with vehicle or synthetic A1-42 peptide previously character-
ized by atomic force microscopy, and relative neurotoxicity was as-
sessed with MTT and LDH assays.

Our findings showing a statistical effect of the second X chromo-
some in contributing resilience across measures in mice and mouse 
primary neurons led us to study Kdm6a, an X-linked gene that es-
capes inactivation in mice and humans. We established that Kdm6a 
escapes X-chromosome inactivation in mouse primary neurons us-
ing RNA FISH. We then queried KDM6A expression in humans using 
established databases of brain tissues including the Mayo Clinic 
Brain Bank and Mount Sinai School of Medicine Brain Bank (RNA 
sequencing), Gene Expression Omnibus (RNA microarray), and GTEx. 
We examined clinical and cognitive trajectories using the ADNI data-
base to assess the relevance of our findings to the human condition. 
Last, we tested whether elevating the expression of Kdm6a causally 
contributed resilience to AD-related deficits in mouse primary neurons 
and hAPP mice using lentiviral gene delivery methods.

Statistical analyses
Statistical analyses were carried out with GraphPad Prism (version 5.0) 
for t tests and log-rank tests for survival analyses. For FCG-hAPP 
mouse and XY*-hAPP mouse survival statistical analysis, Cox pro-
portional hazards models were applied to determine main effects, 
and a multivariate Cox model was used to test interactions of main 
variables on survival. R (nmle package) was used for analyses of 
variance (ANOVAs), post hoc tests, and meta-analysis. Differences 
between two means were assessed by two-tailed t tests for all experi-
ments unless indicated otherwise in a replication cohort. Differences 
among multiple means were assessed by two-way ANOVA. A mixed-
model ANOVA was used for analyses of Morris water maze data 
and included effects of repeated measures. Only significant P values 
were stated for two-way ANOVA results. Unless indicated otherwise, 
multiple comparisons of post hoc t tests were corrected for with the 
Bonferroni-Holm (stepwise Bonferroni) procedure to control for a 
family-wise error rate of  = 0.05. Linear mixed-effects models were 
fit in R (93) using the standard lme4 (94) package. In mouse studies, 
exclusion criteria (greater than 2 SDs above or below the mean) 
were defined a priori to ensure unbiased exclusion of outliers. Error 

bars represent ±SEM. Null hypotheses were rejected at or below a 
P value of 0.05. All analyses for KDM6A human studies were per-
formed using R version 3.5.2 unless otherwise stated. We used linear 
mixed-effects modeling with random intercepts to test whether the 
genetic variant identified via GTEx as a modifier of KDM6A expression 
in brain also affected cognitive and clinical changes in the ADNI cohort. 
We covaried for baseline age, sex, education, and APOE4 dose.

SUPPLEMENTARY MATERIALS
stm.sciencemag.org/cgi/content/full/12/558/eaaz5677/DC1
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having a second X chromosome could contribute to counteracting AD vulnerability.
gene was associated with higher expression in the brain and less cognitive decline. These results imply that 

KDM6A, an X chromosome gene that escapes inactivation. In humans, variation in the Kdm6ain part through 
model of AD. Engineering mice to harbor a second X chromosome conferred resilience in male and female mice, 

 now report that the X chromosome may affect AD-related vulnerability in a mouseet al.than do women. Davis 
men die earlier, whereas women live longer. During aging and preclinical AD, men show more cognitive deficits 

Whether sex chromosomes contribute to sex difference in Alzheimer's disease (AD) is unknown. In AD,
The advantage of an extra X
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